
Gdansk Embedded Meetup, Gdansk, 2023-01-10

Open source FPGA NVMe
accelerator platform for BPF
driven ML processing with
Linux/Zephyr

Karol Gugala, kgugala@antmicro.com

• Founded in 2009, Antmicro provides commercial
open source engineering services, platforms
and tools (SW, HW, FPGA, ASIC)

• Introducing new design methodologies and
workflows based on open source

• Applying those methodologies and using Zephyr
to build real products and development
platforms - like the one we will describe today, an
open source NVMe accelerator platform

ANTMICRO

Open Source NVME IP with AI Acceleration

OPEN SOURCE LEADERSHIP

We are members of the world’s leading
open source organizations and initiatives.

Open Source NVME IP with AI Acceleration

WHAT WE DO

See our technology showcase on antmicro.com

Open Source NVME IP with AI Acceleration

https://antmicro.com

WHAT WE DO

EDGE AI & SOFTWARE
OS porting, drivers, build

systems, device management,
edge AI algorithms, data fusion

CLOUD SYSTEMS
CI setups, cloud builders, OTA

update systems, AI/ML
pipelines

FPGA & ASIC
Custom IP blocks, SiP

development, soft SoCs,
heterogeneous processing

systems

DEVELOPMENT
PLATFORMS

Proof of Concepts (PoC), PCB
design, BSPs, prototyping,

open platforms

Open Source NVME IP with AI Acceleration

Baltyk

BALTYK OFFICE, POZNAN

CONCORDIA OFFICE,
POZNAN
CONCORDIA OFFICE,
POZNAN
CONCORDIA OFFICE,
POZNAN

KOMANDORSKA 12 OFFICE,
WROCLAW

CONCORDIA OFFICE,
WROCLAW
CONCORDIA OFFICE,
WROCLAW

ETERNUM OFFICE,
GDANSK

WE ARE HIRING!

Open Source NVME IP with AI Acceleration

• All the openings available at
https://careers.antmicro.com

• Engineering positions:

▫ AI Engineer

▫ Back-end engineer

▫ Open source C Engineer

▫ Cloud engineer

▫ …………..

• Engineering internships

https://careers.antmicro.com/jobs

WHAT IT IS ALL ABOUT

Open Source NVME IP with AI Acceleration

• The goal of the project is to provide a platform
for research on computational storage

• Build an open source platform for NVMe
accelerators development on a flexible FPGA
SoC platform - Xilinx US+ MPSoC

• Create an open source NVMe FPGA core

• Prepare firmware that handles
essential NVMe operations

• Expand initial NVMe implementation with
custom accelerator-related extensions

WHY DO WE NEED ACCELERATORS IN
NVMe DRIVES?

Open Source NVME IP with AI Acceleration

• Machine Learning usually operates on large
amounts of data

• Transferring data back and forth generates
bottlenecks and costs

• NVMe accelerators reside close to stored data

• They allow us to process the data on the fly, or
perform computation on already stored data,
detect interesting patterns

• Data can be processed directly without
consuming compute resources / spinning
up machines

TARGET HW PLATFORM

Open Source NVME IP with AI Acceleration

• FPGA Based PCIe ML/AI Accelerator Device in
U.2 Formfactor

• Xilinx Ultrascale+ MPSoC XCZU7EV

• 4GB DDR

• Gen3 x4 PCIe 2.5” SFF

• 25W Max Power

DEVELOPMENT PLATFORM - ZCU106

Open Source NVME IP with AI Acceleration

SYSTEM OVERVIEW

Open Source NVME IP with AI Acceleration

PCIe AXI-Lite Bridge

PCIe core

NVMe control registers

PCIe DMA

RPU (R5)

PS DDR Memory

PS IPI core

APU (A53)
AXI4

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Stream

AXI-Stream

AXI-Lite InterruptAXI4

AXI4

PL PS

NVMe COMMANDS

Open Source NVME IP with AI Acceleration

• Admin commands:

▫ Identify

▫ GetLog

▫ Queue management

• IO commands:

▫ Read

▫ Write

▫ Flush

SYSTEM OVERVIEW

Open Source NVME IP with AI Acceleration

PCIe AXI-Lite Bridge

PCIe core

NVMe control registers

PCIe DMA

RPU (R5)

PS DDR Memory

PS IPI core

APU (A53)
AXI4

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Lite

Interrupt

AXI-Stream

AXI-Stream

AXI-Lite InterruptAXI4

AXI4

PL PS

BASE NVMe COMMAND SET HANDLING

Open Source NVME IP with AI Acceleration

• FPGA NVMe subsystem is handled by software running
on the Cortex R5 CPU complex

• The R5 software is a Zephyr app and it handles base
NVMe commands

▫ NVMe registers accesses from host generates
interrupts handled by the software running on the R5
cores

▫ The software handles commands queues, data
transfers, control messages etc.

• All the “unknown” commands are passed to a Linux
service for processing

HOW TO HANDLE DYNAMIC FPGA
LOGIC

Open Source NVME IP with AI Acceleration

• The dynamic nature of the FPGA logic makes it
harder to maintain both parts (FPGA logic and
software) and keep them in line

• Each change may impact both both sides of the
system:

▫ Adding e.g. new NVMe commands may
reorganize the memory layout of the device

▫ Commands queues length may change

GENERATE THE CODE ON THE FLY

Open Source NVME IP with AI Acceleration

• A solution to that is to generate both sides of the
code on-the-fly

• The build system we introduced parses the
NVMe 1.4 specification (a pdf file) and generates
the following:

▫ NVMe registers logic (Chisel code)

▫ Zephyr app register definitions (header files)

▫ Zephyr app register access logic (C code)

• The generator itself is available on GitHub

https://github.com/antmicro/nvme-registers-generator

EXTRACTED REGISTER MAP IN CHISEL

Open Source NVME IP with AI Acceleration

//CSRRegMap.scala

// Generated on 13/09/2022 08:29:20 with NVM-Express-1_4-2019.06.10-Ratified.pdf,
git_sha 03aa526

package NVMeCore

import chisel3._

object CSRRegMap {
 val regMap = Map [Int, BaseRegister] (
 0x0 -> Module(new ReadOnlyRegister(new CAP_0, 32)),
 0x4 -> Module(new ReadOnlyRegister(new CAP_1, 32)),
 0x8 -> Module(new ReadOnlyRegister(new VS, 32)),

…
 0xe10 -> Module(new StorageRegister(new PMRSWTP, 32)),
 0xe14 -> Module(new StorageRegister(new PMRMSC_0, 32)),
 0xe18 -> Module(new StorageRegister(new PMRMSC_1, 32)),

)
}

EXTRACTED REGISTER DEFINITION IN CHISEL

Open Source NVME IP with AI Acceleration

//RegisterDefs.scala

// Generated on 13/09/2022 08:29:19 with registers.json, git_sha 03aa526

package NVMeCore

import chisel3._

class CAP_0 extends RegisterDef {
 val TO = UInt(8.W)
 val Reserved_2 = UInt(5.W)
 val AMS = UInt(2.W)
 val CQR = Bool()
 val MQES = UInt(16.W)
}

…

NON-STANDARD NVMe COMMANDS

Open Source NVME IP with AI Acceleration

• As mentioned earlier, all the commands not known to
Zephyr app are passed upwards for further processing
to Linux running on the second, Cortex-A53 CPU
complex

• This makes the platform easily extendable and perfect
for experimenting with NVMe specification extensions

OPENAMP

Open Source NVME IP with AI Acceleration

• Framework for systems with
asymmetric multiprocessing

• Provides easy method of communication
between CPUs in AMP system

• RPU side runs Zephyr and is controlled from
Linux application (using openAMP)

• Linux application implements openAMP
communication and interfaces NVMe blocks
with eBPF virtual machine

SMP OS
E.g. Linux

Baremetal
RTOS

Cortex-A
Cortex-A

Cortex-A
Cortex-A

Cortex-A
Cortex-A

Cortex-ACortex-R
Split or

lockstep

Cache TCM

Master Memory Remote MemoryShared memory

IPI
GIC

Heterogeneous or Asymmetric: AMP

Homogeneous

ACCESSING THE ACCELERATOR

Open Source NVME IP with AI Acceleration

• APU runs a service fetching the all the
unhandled NVMe commands and checks if they
are accelerator-specific - it communicates via
rpmsg

• The custom command are used to control
various aspects of the system:

▫ loading the firmware for the accelerator, as
well as ML model and inputs

▫ Controlling the accelerator flow (resetting,
starting/stopping)

ACCELERATOR FIRMWARE

Open Source NVME IP with AI Acceleration

• https://github.com/iovisor/ubpf

• Accelerator firmware is in fact an eBPF bytecode

• It is executed inside BPF virtual machine running
in Linux user space

• The firmware can be generated from C source
using LLVM

https://github.com/iovisor/ubpf

MACHINE LEARNING RUNTIME ON APU

Open Source NVME IP with AI Acceleration

• The uBPF virtual machine was extended with
functions for running the machine learning
models with given inputs

• The runtime used for the ML models is
TensorFlow Lite

• TensorFlow Lite has a native implementation for
most of the available ML operations and can run
models directly on APU

• TensorFlow Lite also provides a delegation
mechanism, allowing the developers to move
computations of certain operations to the
dedicated accelerator hardware

SPECIFICATION OF NEW OPERATIONS IN BPF (VM CODE)

void vm_tflite_apu (char *ibuf, char *obuf, int isize, int osize, int model_size)
{
 char *model_buf = ibuf;
 char *input_buf = ibuf+model_size;

 tflite_handler(model_buf, input_buf, obuf, model_size, isize, osize, false);
}

void vm_tflite_vta (char *ibuf, char *obuf, int isize, int osize, int model_size)
{
 char *model_buf = ibuf;
 char *input_buf = ibuf+model_size;

 tflite_handler(model_buf, input_buf, obuf, model_size, isize, osize, true);
}

...

void register_functions (struct ubpf_vm *vm)
{
 ubpf_register(vm, 1, "print", (void*)vm_print);
 ubpf_register(vm, 2, "tflite_apu" , (void*)vm_tflite_apu);
 ubpf_register(vm, 3, "tflite_vta" , (void*)vm_tflite_vta);
}

Open Source NVME IP with AI Acceleration

EXAMPLE ACCELERATOR FIRMWARE

static void (*print)(char*) = (void *)1;
static void (*tflite_vta)(char*, char*, int, int, int) = (void *)3;

int bpf_prog(char *imem, char *omem)
{
 const int model_size = 1024;
 const int input_size = 8;
 const int output_size = 4;
 char expected_output[] = {0x7, 0xC, 0x4, 0x5};

 tflite_vta(imem, omem, input_size, output_size, model_size);

 for (int i = 0; i < output_size; i++) {
 if (omem[i] != expected_output[i]) {
 print("ADD test failed\n");
 return i;
 }
 }

 print("ADD test passed\n");
 return -1;
}

Open Source NVME IP with AI Acceleration

SUPPORT FOR EXTERN FUNCTIONS IN FIRMWARE

extern void (*print)(char*);
extern void (*tflite_vta)(char*, char*, int, int, int);

int bpf_prog(char *imem, char *omem)
{
 const int model_size = 1024;
 const int input_size = 8;
 const int output_size = 4;
 char expected_output[] = {0x7, 0xC, 0x4, 0x5};

 tflite_vta(imem, omem, input_size, output_size, model_size);

 for (int i = 0; i < output_size; i++) {
 if (omem[i] != expected_output[i]) {
 print("ADD test failed\n");
 return i;
 }
 }

 print("ADD test passed\n");
 return -1;
}

Open Source NVME IP with AI Acceleration

ACCELERATOR DESIGN - VTA

Open Source NVME IP with AI Acceleration

• github.com/apache/tvm-vta

• VTA (Versatile Tensor Accelerator)

▫ Programmable and customizable accelerator IP core

▫ Written in Chisel

▫ Part of the Apache TVM framework

• Consists of three main modules - LOAD/STORE and
COMPUTE modules

• Each module has its specific instruction queue

• Order of execution is determined by dependency queues

• TensorFlow Lite executed within eBPF virtual machine can
delegate certain operations to the VTA, utilizing its high
parallelism https://tvm.apache.org/docs/topic/vta/dev/hardware.html

https://github.com/apache/tvm-vta
https://tvm.apache.org/docs/topic/vta/dev/hardware.html

VTA - LOAD/STORE MODULE

Open Source NVME IP with AI Acceleration

VTA - COMPUTE MODULE

Open Source NVME IP with AI Acceleration

• GEMM core performs general matrix multiplication on
matrices of size:
BATCH x BLOCK_IN and BLOCK_IN x BLOCK_OUT
And produces a matrix of size
BATCH x BLOCK_OUT

• In the default design, 16-element INT8 vector is
multiplied by an array of size 16x16

• For example, in CONV2D tensors’ formats are:

▫ Data: NCHWnc

▫ Kernels: OIHWoi

• ALU core can perform element-wise operations on one
or two BATCH x BLOCK_OUT tensors, such as MIN,
MAX, ADD, MUL, shift left or right

BLOCK_IN

BLOCK_OUT

B
LO

C
K

_I
N

BATCH

VTA DELEGATE IN TENSORFLOW LITE

Open Source NVME IP with AI Acceleration

• TensorFlow Lite delegate prepares the instruction stream that is
passed asynchronously to the VTA

• Instruction stream consists of:
▫ VTA LOAD instructions (VTALoadBuffer2D)
▫ VTA STORE instructions (VTAStoreBuffer2D)
▫ VTA micro-op kernel (VTAUop), consisting of:

▪ Outer and inner loop for GEMM/ALU operations
▪ GEMM/ALU operations (one or many), deployed on

various VTA SRAM addresses
▫ Dependency pushes and pops for 4 synchronization queues

(LOAD->COMPUTE, COMPUTE->LOAD, COMPUTE->STORE,
STORE->COMPUTE)

• Dependency queues allow modules to work independently,
allowing to hide I/O latency

• Once VTA finishes the instructions, APU collects results

CL

LOAD3

LOAD1

LC

LOAD2

LC

LC

COMP1

CL

COMP2

CL

LC

LC

CL

LOAD4

LC

LC

COMP3

CS

LC

COMP4

STORE

LOAD1

COMP1LOAD2

LOAD3

LOAD4

COMP2

COMP3

COMP4

STORE

CS

CS

STORE

STORE

SUPPORTED OPERATIONS IN VTA DELEGATE

Open Source NVME IP with AI Acceleration

• Currently supported:
▫ Vector addition

• In progress:
▫ 2D convolution
▫ Improved delegation mechanism
▫ Improved processing of operations, based on

hardware constraints given in the
configuration

HOW TO GET ON WITH THE PROJECT

• All the code is available on GitHub
https://github.com/antmicro/alkali-csd-projects

• It will be donated to CHIPS Alliance soon

Open Source NVME IP with AI Acceleration

https://github.com/antmicro/alkali-csd-projects

PROJECT STRUCTURE

• Automated build system for building the project
▫ https://github.com/antmicro/alkali-csd-projects
▫ Contains examples for the supported boards
▫ Uses Alkali firmware and hardware submodules

• Alkali hardware (FPGA) repository
▫ https://github.com/antmicro/alkali-csd-hw
▫ Generates hardware description file and bitstream

• Alkali firmware repository
▫ https://github.com/antmicro/alkali-csd-fw
▫ Generates APU and RPU applications, U-Boot,

Linux and rootfs

Open Source NVME IP with AI Acceleration

https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-hw
https://github.com/antmicro/alkali-csd-fw

SUMMING IT UP

Open Source NVME IP with AI Acceleration

• Open source NVMe development platform is a perfect
framework for research and development of
computational storage concepts

• Beside the complete platform, there is a number of
useful blocks developed within the project that can be
reused to build an NVMe device

• Contributions are welcome!

• Series of Open Source Meetups in Poznan,
Wroclaw and Gdansk

• Scheduled for the 26th of January

• Start at 18:00

• 2 talks, agenda to be announced soon

• Afterparty

• New venue: ESC (European Solidarity Center)

• Link to the event, sign up!

GDANSK OPEN SOURCE MEETUP #2

Open Source NVME IP with AI Acceleration

https://www.meetup.com/gdansk-open-source-meetup/events/290078975/

THANK YOU
FOR YOUR ATTENTION!

