Open source FPGA NVMe
accelerator platform for BPF
driven ML processing with
Linux/Zephyr




ANTMICRO

« Founded in 2009, Antmicro provides commercial
open source engineering services, platforms
and tools (SW, HW, FPGA, ASIC)

« Introducing new design methodologies and
workflows based on open source

« Applying those methodologies and using Zephyr
to build real products and development
platforms - like the one we will describe today, an
open source NVMe accelerator platform




OPEN SOURCE LEADERSHIP

We are members of the world’s leading

open source organizations and initiatives.
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WHAT WE DO

See our technology showcase on antmicro.com
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https://antmicro.com

WHAT WE DO

FPGA & ASIC
Custom IP blocks, SiP
development, soft SoCs,
heterogeneous processing
systems

ol b

DEVELOPMENT
PLATFORMS
Proof of Concepts (PoC), PCB
design, BSPs, prototyping,
open platforms

b

EDGE Al & SOFTWARE
OS porting, drivers, build
systems, device management,
edge Al algorithms, data fusion

CLOUD SYSTEMS
Cl setups, cloud builders, OTA
update systems, Al/ML
pipelines
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WE ARE HIRING!

All the openings available at
https://careers.antmicro.com

Engineering positions:
= Al Engineer
= Back-end engineer
= Open source C Engineer
= Cloud engineer

Engineering internships

() antmicro



https://careers.antmicro.com/jobs

WHAT IT IS ALL ABOUT

.« The goal of the project is to provide a platform W t D' .t I
for research on computational storage es ern Igl a ®
« Build an open source platform for NVMe

accelerators development on a flexible FPGA
SoC platform - Xilinx US+ MPSoC

« Create an open source NVMe FPGA core

, ;%) antmicro

essential NVMe operations

« Expand initial NVMe implementation with
custom accelerator-related extensions



WHY DO WE NEED ACCELERATORS IN
NVMe DRIVES?

« Machine Learning usually operates on large
amounts of data

» Transferring data back and forth generates
bottlenecks and costs

« NVMe accelerators reside close to stored data

« They allow us to process the data on the fly, or
perform computation on already stored data,
detect interesting patterns

» Data can be processed directly without
consuming compute resources / spinning
up machines



TARGET HW PLATFORM

FPGA Based PCle ML/AI Accelerator Device in
U.2 Formfactor

Xilinx Ultrascale+ MPSoC XCZU7EV
4GB DDR

Gen3 x4 PCle 2.5” SFF

25W Max Power

Western Digital wwwwdcicom
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DEVELOPMENT PLATFORM -ZCU106




SYSTEM OVERVIEW
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NVMe COMMANDS

« Admin commands:

= |dentify

= GetLog

= Queue management n
+ 1O commands: ‘

= Read

o Write
o Flush

EXPRESS
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BASE NVMe COMMAND SET HANDLING

« FPGA NVMe subsystem is handled by software running
on the Cortex R5 CPU complex

« The R5 software is a Zephyr app and it handles base

NVMe commands ‘

= NVMe registers accesses from host generates »A
interrupts handled by the software running on the R5 Ze h rm
cores p y

= The software handles commands queues, data
transfers, control messages etc.

« All the “unknown” commands are passed to a Linux
service for processing



HOW TO HANDLE DYNAMIC FPGA
LOGIC

« The dynamic nature of the FPGA logic makes it
harder to maintain both parts (FPGA logic and
software) and keep them in line

- Each change may impact both both sides of the
system:

= Adding e.g. new NVMe commands may
reorganize the memory layout of the device

= Commands queues length may change

() antmicro




GENERATE THE CODE ON THE FLY

- A solution to that is to generate both sides of the
code on-the-fly

« The build system we introduced parses the
NVMe 1.4 specification (a pdf file) and generates
the following:

= NVMe registers logic (Chisel code)
o Zephyr app register definitions (header files)
s Zephyr app register access logic (C code)

« The generator itself is available on GitHub

() antmicro



https://github.com/antmicro/nvme-registers-generator

EXTRACTED REGISTER MAP IN CHISEL

NVMeCore
chisel3._

object CSRRegMap {
val regMap = Map [Int, BaseRegister] (
Ox0 —> Module( ReadOnlyRegister ( CAP_0, 32)),
Ox4 —> Module ( ReadOnlyRegister ( CAP_1, 32)),
Ox8 —> Module( ReadOnlyRegister ( VS, 32)),

Oxel® -> Module( StorageRegister ( PMRSWTP, 32)),

Oxel4 -> Module( StorageRegister ( PMRMSC_0, 32)),
Oxel8 -> Module( StorageRegister ( PMRMSC_1, 32)),



EXTRACTED REGISTER DEFINITION IN CHISEL

NVMeCore
chisel3._
CAP_0O RegisterDef {
val TO = UInt(8.W)
val Reserved_2 = UInt(5.W)
val AMS = UInt(2.W)
val CQR = Bool()
val MQES = UInt(16.W)



NON-STANDARD NVMe COMMANDS

« As mentioned earlier, all the commands not known to
Zephyr app are passed upwards for further processing
to Linux running on the second, Cortex-A53 CPU A A
complex

» This makes the platform easily extendable and perfect
for experimenting with NVMe specification extensions




OPENAMP

- Framework for systems with
asymmetric multiprocessing

» Provides easy method of communication
between CPUs in AMP system

« RPU side runs Zephyr and is controlled from
Linux application (using openAMP)

« Linux application implements openAMP
communication and interfaces NVMe blocks
with eBPF virtual machine

antmlcro

Heterogeneous or Asymmetric: AMP

Homogeneous

SMP OS
E.g. Linux

Cortex-A

Master Memory Shared memory

Baremetal
RTOS

Cortex-R
Split or
lockstep

Remote Memory




ACCESSING THE ACCELERATOR

« APU runs a service fetching the all the
unhandled NVMe commands and checks if they
are accelerator-specific - it communicates via
rpmsg

« The custom command are used to control

various aspects of the system: T F .
= |oading the firmware for the accelerator, as ensor IOW the
well as ML model and inputs
= Controlling the accelerator flow (resetting,

starting/stopping)



ACCELERATOR FIRMWARE

« https://qgithub.com/iovisor/ubpf

« Accelerator firmware is in fact an eBPF bytecode

« It is executed inside BPF virtual machine running
in Linux user space

- The firmware can be generated from C source
using LLVM

TensorFlow Lite

A eBPF



https://github.com/iovisor/ubpf

MACHINE LEARNING RUNTIME ON APU

« The uBPF virtual machine was extended with
functions for running the machine learning

models with given inputs Te nsorFIOW I_lte

e The runtime used for the ML models is

TensorFlow Lite

» TensorFlow Lite has a native implementation for
most of the available ML operations and can run
models directly on APU

» TensorFlow Lite also provides a delegation
mechanism, allowing the developers to move
computations of certain operations to the
dedicated accelerator hardware




SPECIFICATION OF NEW OPERATIONS IN BPF (VM CODE)

void vm tflite apu (char *ibuf, char *obuf, int isize, int osize, int model size)
{
*model buf = ibuf;
*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, false);
}
void vm tflite vta (char *ibuf, char *obuf, int isize, int osize, int model size)

*model buf = ibuf;

*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, true) ;
}
void register functions (struct ubpf vm *vm)
{
ubpf register(vm, 1, "print", ( *)vm_print);
ubpf register(vm, 2, "tflite apu", ( *)vm_tflite apu);

ubpf register(vm, 3, "tflite vta", ( *)vm_tflite vta);



EXAMPLE ACCELERATOR FIRMWARE

static

static vo

int bpf pr

{

(*print) (char*) = ( *)1;
(*tfliteivta)(char*, char*, int, int, int) = ( *)3;
rog (char *imem, char *omem)
model size = 1024;
input size = §;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};
tflite vta(imem, omem, input size, output size, model size);
( i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {

print ("ADD test failed\n");
i;

print ("ADD test passed\n");

,l;



SUPPORT FOR EXTERN FUNCTIONS IN FIRMWARE

extern void (*print) (char*);
extern void (*tflite vta) (char*, char*, int, int, int);

int bpf prog(char *imem, char *omem)

{
model size = 1024;
input_size = 8;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};

tflite vta(imem, omem, input size, output size, model size);

( i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {
print ("ADD test failed\n");
i;
}

}

print ("ADD test passed\n");
,l;



ACCELERATOR DESIGN - VTA

github.com/apache/tvm-vta

smlvMm

« VTA (Versatile Tensor Accelerator)

= Programmable and customizable accelerator IP core

o Written in Chisel

INSTRUCTION FETCH MODULE
= Part of the Apache TVM framework
ce, B o
- Consists of three main modules - LOAD/STORE and LDeoMP G MPosST O
COMPUTE modules T |  [COMPUTE MODULE o [TTTTTTTTIITH+
REGISTER
- Each module has its specific instruction queue LOAD I: = STORE
MODULE MODULE
« Order of execution is determined by dependency queues
Eiiiininng Mg
- TensorFlow Lite executed within eBPF virtual machine can ) .
— Coumorsue ]
delegate certain operations to the VTA, utilizing its high

para llelism https://tvm.apache.org/docs/topic/vta/dev/hardware.html


https://github.com/apache/tvm-vta
https://tvm.apache.org/docs/topic/vta/dev/hardware.html

VTA - LOAD/STORE MODULE

I




VTA - COMPUTE MODULE

BLOCK_OUT

« GEMM core performs general matrix multiplication on
matrices of size:
BATCH x BLOCK_IN and BLOCK_IN x BLOCK_OUT
And produces a matrix of size
BATCH x BLOCK_OUT

+ In the default design, 16-element INT8 vector is
multiplied by an array of size 16x16

BLOCK_IN

BLOCK_IN
BATCH S [

« For example, in CONV2D tensors’ formats are:
= Data: NCHWnc
o Kernels: OIHWoi

« ALU core can perform element-wise operations on one
or two BATCH x BLOCK_OUT tensors, such as MIN,
MAX, ADD, MUL, shift left or right



VTA DELEGATE IN TENSORFLOW LITE

« TensorFlow Lite delegate prepares the instruction stream that is
passed asynchronously to the VTA
« Instruction stream consists of:
= VTA LOAD instructions (VTALoadBuffer2D)
= VTA STORE instructions (VTAStoreBuffer2D)
= VTA micro-op kernel (VTAUop), consisting of:
= Quter and inner loop for GEMM/ALU operations
= GEMM/ALU operations (one or many), deployed on
various VTA SRAM addresses
= Dependency pushes and pops for 4 synchronization queues
(LOAD->COMPUTE, COMPUTE->LOAD, COMPUTE->STORE,
STORE->COMPUTE)
+ Dependency queues allow modules to work independently,
allowing to hide I/O latency
« Once VTA finishes the instructions, APU collects results

LOAD1

LOAD2

COMP1

COMP2

LOAD3

LOAD4

COMP3

COMP4

STORE

STORE

COMP1

COMP2

COMP3

COMP4

STORE |

STORE



SUPPORTED OPERATIONS IN VTA DELEGATE

« Currently supported:
= Vector addition

« In progress:
= 2D convolution

= Improved delegation mechanism
= Improved processing of operations, based on

hardware constraints given in the Te nsorFIOW the

configuration



THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

HOW TO GET ON WITH THE PROJECT

o All the code is available on GitHub
https://qithub.com/antmicro/alkali-csd-projects
It will be donated to CHIPS Alliance soon

Western Digital.

antmlcro



https://github.com/antmicro/alkali-csd-projects

THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

PROJECT STRUCTURE

« Automated build system for building the project

o https://github.com/antmicro/alkali-csd-projects

= Contains examples for the supported boards

= Uses Alkali firmware and hardware submodules
« Alkali hardware (FPGA) repository

o https://github.com/antmicro/alkali-csd-hw

= Generates hardware description file and bitstream a ntm |C|‘O
- Alkali firmware repository

o https://github.com/antmicro/alkali-csd-fw

= Generates APU and RPU applications, U-Boot,

Linux and rootfs

Western Digital.
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SUMMINGITUP

« Open source NVMe development platform is a perfect
framework for research and development of
computational storage concepts ) | A

» Beside the complete platform, there is a number of
useful blocks developed within the project that can be
reused to build an NVMe device

« Contributions are welcome!




GDANSK OPEN SOURCE MEETUP #2

-« Series of Open Source Meetups in Poznan,
Wroclaw and Gdansk

« Scheduled for the 26th of January

- Start at 18:00

- 2 talks, agenda to be announced soon
- Afterparty

« New venue: ESC (European Solidarity Center)

0]
 Link to the event, sign up! o0

0]

Gdansk Open Source Meetup



https://www.meetup.com/gdansk-open-source-meetup/events/290078975/
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