Open source FPGA NVMe
accelerator platform for BPF
driven ML processing with
Linux/Zephyr

ANTMICRO

« Founded in 2009, Antmicro provides commercial
open source engineering services, platforms
and tools (SW, HW, FPGA, ASIC)

« Introducing new design methodologies and
workflows based on open source

« Applying those methodologies and using Zephyr
to build real products and development
platforms - like the one we will describe today, an
open source NVMe accelerator platform

OPEN SOURCE LEADERSHIP

We are members of the world’s leading

open source organizations and initiatives.

THE

L LINUX

FOUNDATION

L RISC

CHIPS .
ALLIANCE -

€ OpenPOWER

-

<
Zephyr”

WHAT WE DO

See our technology showcase on antmicro.com

{: Kenning VEDLIeT.

Renode support for Flexible and scalable CI with Synchronized multi-sensor
Microchip’s RISC-V custom GitHub runners data in Renode with RESD Comparing optimized Open source CAN core for a Testing SkyWater MPW
platforms models with Kenning custom ASIC designs in Renode

#: Kenning VEDL3:.

Next-gen SDI-MIPI Video Benchmarking DNN on Protop -an d .) s - . N
Converter NVIDIA Jetson AGX Orin platform tester Scaling Verilator for very Shortest path finding in Live video analysis with
with Kenning large designs Bluetooth Mesh using Raviewer and pyrav4i2

Renode

https://antmicro.com

WHAT WE DO

FPGA & ASIC
Custom IP blocks, SiP
development, soft SoCs,
heterogeneous processing
systems

ol b

DEVELOPMENT
PLATFORMS
Proof of Concepts (PoC), PCB
design, BSPs, prototyping,
open platforms

b

EDGE Al & SOFTWARE
OS porting, drivers, build
systems, device management,
edge Al algorithms, data fusion

CLOUD SYSTEMS
Cl setups, cloud builders, OTA
update systems, Al/ML
pipelines

BALTYK OFFICE, POZNAN

zJantmicro

>

_,,..-‘
NEREEREEES |

B e o

.

P
- i

1 '
;:_~,'

= = =

i
|
1
l
I
1
| .-,.I

-

T

CONCORDIA OFFICE,

\—%\1 '?7 !

K1

A gt
M . a » = 8

— S E—

KOMANDORSKA 12 OFFICE,

WROCLAW

A e 'V:':COARDIA OF'FAI‘CE.’
uf‘,&WROCLAW ?‘ i

Tmmm L LUETTTTTT RS
‘ ‘L ‘aé”- EZM'{I“'

gvll Q

LT

= ; 'l\i .__u:!'

() antmicro

WE ARE HIRING!

All the openings available at
https://careers.antmicro.com

Engineering positions:
= Al Engineer
= Back-end engineer
= Open source C Engineer
= Cloud engineer

Engineering internships

() antmicro

https://careers.antmicro.com/jobs

WHAT IT IS ALL ABOUT

.« The goal of the project is to provide a platform W t D' .t I
for research on computational storage es ern Igl a ®
« Build an open source platform for NVMe

accelerators development on a flexible FPGA
SoC platform - Xilinx US+ MPSoC

« Create an open source NVMe FPGA core

, ;%) antmicro

essential NVMe operations

« Expand initial NVMe implementation with
custom accelerator-related extensions

WHY DO WE NEED ACCELERATORS IN
NVMe DRIVES?

« Machine Learning usually operates on large
amounts of data

» Transferring data back and forth generates
bottlenecks and costs

« NVMe accelerators reside close to stored data

« They allow us to process the data on the fly, or
perform computation on already stored data,
detect interesting patterns

» Data can be processed directly without
consuming compute resources / spinning
up machines

TARGET HW PLATFORM

FPGA Based PCle ML/AI Accelerator Device in
U.2 Formfactor

Xilinx Ultrascale+ MPSoC XCZU7EV
4GB DDR

Gen3 x4 PCle 2.5” SFF

25W Max Power

Western Digital wwwwdcicom

@::"zu

DEVELOPMENT PLATFORM -ZCU106

SYSTEM OVERVIEW

PL . PS

AXI-Stream AXl14

PCle core PCle DMA PS DDR Memory APU (A53)
[[y Y : [[¥
] AXI-Lite :
1 1
1 1
AXI-Stream i 3 . !
: Interrupt AXl14 AXI-Lite Interrupt .
S N \ '
1 1
: 1 !
AXI-Lite AXI-Lite ¥ v AXI-Lite L

PCle AXI-Lite Bridge Interrupt NVMe control registers |nte:rrupt RPU (R5) Interrupt PS IPI core

NVMe COMMANDS

« Admin commands:

= |dentify

= GetLog

= Queue management n
+ 1O commands: ‘

= Read

o Write
o Flush

EXPRESS

SYSTEM OVERVIEW

PL . PS

AXI-Stream AXl14

PCle core PCle DMA PS DDR Memory APU (A53)
[[y Y : [[¥
] AXI-Lite :
1 1
1 1
AXI-Stream i 3 . !
: Interrupt AXl14 AXI-Lite Interrupt .
S N \ '
1 1
: 1 !
AXI-Lite AXI-Lite ¥ v AXI-Lite L

PCle AXI-Lite Bridge Interrupt NVMe control registers |nte:rrupt RPU (R5) Interrupt PS IPI core

BASE NVMe COMMAND SET HANDLING

« FPGA NVMe subsystem is handled by software running
on the Cortex R5 CPU complex

« The R5 software is a Zephyr app and it handles base

NVMe commands ‘

= NVMe registers accesses from host generates »A
interrupts handled by the software running on the R5 Ze h rm
cores p y

= The software handles commands queues, data
transfers, control messages etc.

« All the “unknown” commands are passed to a Linux
service for processing

HOW TO HANDLE DYNAMIC FPGA
LOGIC

« The dynamic nature of the FPGA logic makes it
harder to maintain both parts (FPGA logic and
software) and keep them in line

- Each change may impact both both sides of the
system:

= Adding e.g. new NVMe commands may
reorganize the memory layout of the device

= Commands queues length may change

() antmicro

GENERATE THE CODE ON THE FLY

- A solution to that is to generate both sides of the
code on-the-fly

« The build system we introduced parses the
NVMe 1.4 specification (a pdf file) and generates
the following:

= NVMe registers logic (Chisel code)
o Zephyr app register definitions (header files)
s Zephyr app register access logic (C code)

« The generator itself is available on GitHub

() antmicro

https://github.com/antmicro/nvme-registers-generator

EXTRACTED REGISTER MAP IN CHISEL

NVMeCore
chisel3._

object CSRRegMap {
val regMap = Map [Int, BaseRegister] (
Ox0 —> Module(ReadOnlyRegister (CAP_0, 32)),
Ox4 —> Module (ReadOnlyRegister (CAP_1, 32)),
Ox8 —> Module(ReadOnlyRegister (VS, 32)),

Oxel® -> Module(StorageRegister (PMRSWTP, 32)),

Oxel4 -> Module(StorageRegister (PMRMSC_0, 32)),
Oxel8 -> Module(StorageRegister (PMRMSC_1, 32)),

EXTRACTED REGISTER DEFINITION IN CHISEL

NVMeCore
chisel3._
CAP_0O RegisterDef {
val TO = UInt(8.W)
val Reserved_2 = UInt(5.W)
val AMS = UInt(2.W)
val CQR = Bool()
val MQES = UInt(16.W)

NON-STANDARD NVMe COMMANDS

« As mentioned earlier, all the commands not known to
Zephyr app are passed upwards for further processing
to Linux running on the second, Cortex-A53 CPU A A
complex

» This makes the platform easily extendable and perfect
for experimenting with NVMe specification extensions

OPENAMP

- Framework for systems with
asymmetric multiprocessing

» Provides easy method of communication
between CPUs in AMP system

« RPU side runs Zephyr and is controlled from
Linux application (using openAMP)

« Linux application implements openAMP
communication and interfaces NVMe blocks
with eBPF virtual machine

antmlcro

Heterogeneous or Asymmetric: AMP

Homogeneous

SMP OS
E.g. Linux

Cortex-A

Master Memory Shared memory

Baremetal
RTOS

Cortex-R
Split or
lockstep

Remote Memory

ACCESSING THE ACCELERATOR

« APU runs a service fetching the all the
unhandled NVMe commands and checks if they
are accelerator-specific - it communicates via
rpmsg

« The custom command are used to control

various aspects of the system: T F .
= |oading the firmware for the accelerator, as ensor IOW the
well as ML model and inputs
= Controlling the accelerator flow (resetting,

starting/stopping)

ACCELERATOR FIRMWARE

« https://qgithub.com/iovisor/ubpf

« Accelerator firmware is in fact an eBPF bytecode

« It is executed inside BPF virtual machine running
in Linux user space

- The firmware can be generated from C source
using LLVM

TensorFlow Lite

A eBPF

https://github.com/iovisor/ubpf

MACHINE LEARNING RUNTIME ON APU

« The uBPF virtual machine was extended with
functions for running the machine learning

models with given inputs Te nsorFIOW I_lte

e The runtime used for the ML models is

TensorFlow Lite

» TensorFlow Lite has a native implementation for
most of the available ML operations and can run
models directly on APU

» TensorFlow Lite also provides a delegation
mechanism, allowing the developers to move
computations of certain operations to the
dedicated accelerator hardware

SPECIFICATION OF NEW OPERATIONS IN BPF (VM CODE)

void vm tflite apu (char *ibuf, char *obuf, int isize, int osize, int model size)
{
*model buf = ibuf;
*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, false);
}
void vm tflite vta (char *ibuf, char *obuf, int isize, int osize, int model size)

*model buf = ibuf;

*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, true) ;
}
void register functions (struct ubpf vm *vm)
{
ubpf register(vm, 1, "print", (*)vm_print);
ubpf register(vm, 2, "tflite apu", (*)vm_tflite apu);

ubpf register(vm, 3, "tflite vta", (*)vm_tflite vta);

EXAMPLE ACCELERATOR FIRMWARE

static

static vo

int bpf pr

{

(*print) (char*) = (*)1;
(*tfliteivta)(char*, char*, int, int, int) = (*)3;
rog (char *imem, char *omem)
model size = 1024;
input size = §;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};
tflite vta(imem, omem, input size, output size, model size);
(i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {

print ("ADD test failed\n");
i;

print ("ADD test passed\n");

,l;

SUPPORT FOR EXTERN FUNCTIONS IN FIRMWARE

extern void (*print) (char*);
extern void (*tflite vta) (char*, char*, int, int, int);

int bpf prog(char *imem, char *omem)

{
model size = 1024;
input_size = 8;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};

tflite vta(imem, omem, input size, output size, model size);

(i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {
print ("ADD test failed\n");
i;
}

}

print ("ADD test passed\n");
,l;

ACCELERATOR DESIGN - VTA

github.com/apache/tvm-vta

smlvMm

« VTA (Versatile Tensor Accelerator)

= Programmable and customizable accelerator IP core

o Written in Chisel

INSTRUCTION FETCH MODULE
= Part of the Apache TVM framework
ce, B o
- Consists of three main modules - LOAD/STORE and LDeoMP G MPosST O
COMPUTE modules T | [COMPUTE MODULE o [TTTTTTTTIITH+
REGISTER
- Each module has its specific instruction queue LOAD I: = STORE
MODULE MODULE
« Order of execution is determined by dependency queues
Eiiiininng Mg
- TensorFlow Lite executed within eBPF virtual machine can) .
— Coumorsue]
delegate certain operations to the VTA, utilizing its high

para llelism https://tvm.apache.org/docs/topic/vta/dev/hardware.html

https://github.com/apache/tvm-vta
https://tvm.apache.org/docs/topic/vta/dev/hardware.html

VTA - LOAD/STORE MODULE

I

VTA - COMPUTE MODULE

BLOCK_OUT

« GEMM core performs general matrix multiplication on
matrices of size:
BATCH x BLOCK_IN and BLOCK_IN x BLOCK_OUT
And produces a matrix of size
BATCH x BLOCK_OUT

+ In the default design, 16-element INT8 vector is
multiplied by an array of size 16x16

BLOCK_IN

BLOCK_IN
BATCH S [

« For example, in CONV2D tensors’ formats are:
= Data: NCHWnc
o Kernels: OIHWoi

« ALU core can perform element-wise operations on one
or two BATCH x BLOCK_OUT tensors, such as MIN,
MAX, ADD, MUL, shift left or right

VTA DELEGATE IN TENSORFLOW LITE

« TensorFlow Lite delegate prepares the instruction stream that is
passed asynchronously to the VTA
« Instruction stream consists of:
= VTA LOAD instructions (VTALoadBuffer2D)
= VTA STORE instructions (VTAStoreBuffer2D)
= VTA micro-op kernel (VTAUop), consisting of:
= Quter and inner loop for GEMM/ALU operations
= GEMM/ALU operations (one or many), deployed on
various VTA SRAM addresses
= Dependency pushes and pops for 4 synchronization queues
(LOAD->COMPUTE, COMPUTE->LOAD, COMPUTE->STORE,
STORE->COMPUTE)
+ Dependency queues allow modules to work independently,
allowing to hide I/O latency
« Once VTA finishes the instructions, APU collects results

LOAD1

LOAD2

COMP1

COMP2

LOAD3

LOAD4

COMP3

COMP4

STORE

STORE

COMP1

COMP2

COMP3

COMP4

STORE |

STORE

SUPPORTED OPERATIONS IN VTA DELEGATE

« Currently supported:
= Vector addition

« In progress:
= 2D convolution

= Improved delegation mechanism
= Improved processing of operations, based on

hardware constraints given in the Te nsorFIOW the

configuration

THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

HOW TO GET ON WITH THE PROJECT

o All the code is available on GitHub
https://qithub.com/antmicro/alkali-csd-projects
It will be donated to CHIPS Alliance soon

Western Digital.

antmlcro

https://github.com/antmicro/alkali-csd-projects

THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

PROJECT STRUCTURE

« Automated build system for building the project

o https://github.com/antmicro/alkali-csd-projects

= Contains examples for the supported boards

= Uses Alkali firmware and hardware submodules
« Alkali hardware (FPGA) repository

o https://github.com/antmicro/alkali-csd-hw

= Generates hardware description file and bitstream a ntm |C|‘O
- Alkali firmware repository

o https://github.com/antmicro/alkali-csd-fw

= Generates APU and RPU applications, U-Boot,

Linux and rootfs

Western Digital.

https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-hw
https://github.com/antmicro/alkali-csd-fw

SUMMINGITUP

« Open source NVMe development platform is a perfect
framework for research and development of
computational storage concepts) | A

» Beside the complete platform, there is a number of
useful blocks developed within the project that can be
reused to build an NVMe device

« Contributions are welcome!

GDANSK OPEN SOURCE MEETUP #2

-« Series of Open Source Meetups in Poznan,
Wroclaw and Gdansk

« Scheduled for the 26th of January

- Start at 18:00

- 2 talks, agenda to be announced soon
- Afterparty

« New venue: ESC (European Solidarity Center)

0]
 Link to the event, sign up! o0

0]

Gdansk Open Source Meetup

https://www.meetup.com/gdansk-open-source-meetup/events/290078975/

, ;%) antmicro

THANKYOU
FOR YOUR ATTENTION!

